
 

 

SPI Controller for Open-Power Processor 

based Fabless SoC 
Dr. Paulraj Epsiba, Professor, Dept. Ece, Sri Indu College Of Engineering And Technology 

Darshanam Sandhya Rani, Assistant Professor, Dept. Ece, Sri Indu College Of Engineering And Technology 

G.Anitha, Assistant Professor, Dept. Ece, Sri Indu College Of Engineering And Technology 

 
 

Abstract:- Since integrated circuit designs continuously 

expanding, which makes the verification process more 

difficult and time-consuming, effective verification of such 

circuit designs is essential. As a result, a strong testbench 

structure is required, one that includes major generic 

verification components that are highly reusable and are 

simple to adapt to new designs. The UVM hierarchy is one 

such design capable of realizing testbench architectures 

with coverage-driven verification environments with CRT 

(constrained Random Test). According to the verification 

plan devised following a thorough review of the SPI 

protocol requirements, the current effort is appropriately 

concentrated on SPI One Master and Multi Slave protocol 

verification using UVM. The UVM Testbench 

concentrates on generating random vectors that are sent to 

the SPI module or the DUT (Design Under Test). This 

method aids in verifying the functionality of SPI by 

making comparisons with the captured response received 

via scoreboard. By using acceptable or appropriate test 

cases, Testbench also validates the functionality and 

distinguishing characteristics of SPI, and at the conclusion 

of the test, it delivers a cumulative coverage report of the 

design. 

 

Keywords:- UVM, System Verilog, SPI Protocol, Questsim, 

and EDA-playground mentor. 

 

I. INTRODUCTION 

 

For applications that need to transport data at 8 or 16-bits 

per second, the SPI acts as a "3-wire plus chip select" serial 

bus.Information is transmitted between bus-connected devices 

through the three wires. Every gadget on the bus serves as both 

a sender and a recipient simultaneously. Two out of the three 

lines, one in every direction, are used to transfer data; the third 

line acts as a serial clock. Some devices may only be senders, 

while others may only be receivers. The transmitting gadget 

typically has the ability to receive data as well. A receive-only 

device is an example of an SPI display, whereas a receiver and 

send device is an EEPROM. SPI bus-connected devices can be 

categorised as Master/Slave devices. A master device creates 

clock and control signals and starts an information transfer on 

the bus. Through a slave choose (chip enable) line, a slave 

device is managed by the master and is only operational when 

selected. For each slave device, a separate select line is 

typically needed. In a multi-master mode arrangement, the 

same device can act as both a master and a slave, but only one 

master can ever control the bus at any given moment. Any non- 

selected slave device has to withdraw (make the slave output 

line high impedance). Data is timed into and out of the active 

devices before being transferred using a standard shift register 

data transmission method on the SPI bus. SPI devices operate 

in full duplex mode by transmitting and receiving in this way. 

The lines on the SPI bus are entirely one-way. Master generates 

the clock signal, which generally used to synchronize data 

transfer. Data is transmitted from the master to the slave on the 

master-output slave-input (MOSI) line and from the slave to the 

master on the master-input slave-output(MISO) line. The 

master selects each slave device using a separate select line. 

Over the SPI bus, data transfer rates range from almost 0 bits 

per second to 1 MB per second. Typically, data is transferred 

in blocks of eight or sixteen bits. The serial clock synchronises 

all data transport (SCLK). Each clock cycle transfers one bit of 

data. The values of the clock phase and polarity bits dictate four 

different clock modes for the SPI bus. When new data is to be 

transferred onto the bus, the clock phase determines which 

clock edge to use, and the clock polarities establishes the 

intensity of the clock idle state. Any hardware component with 

multiple operating modes will have a mechanism for choosing 

the value of these bits. 

 

Four logic signals are listed for the SPI bus: 

 Serial Peripheral Interface Clock (SCLK)
 Master-Output Slave-Input (MOSI).
 Master-Input Slave-Output (MISO).
 Active low Slave Select (SS).

 

 

 
Fig1.Serial Peripheral Interface Architecture 

 

II. RESEARCH GOALS 

 

Building an usable test bench to validate the SPI slave 

model-based SPI master controller and the AXI bus function 

model is the goal of this research project. The upcoming goals 

aid in achieving the desired outcome: 

 One must comprehend the SPI protocol architecture and the 

particular requirements of the AXI platform in order to link 

the test bench components to the core controller. 

 Employing state-of-the-art verification techniques, such as 

Coverage Driven Functional Verification and Universal 

Verification Methodology. 

 To provide a AXI-compliant SPI master component with 

reusable Verification IP. 

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol23 Issue 8,2023

ISSN No: 2250-3676 www.ijesat.com Page 213



 

 

 
The following are the main contributions of this paper:: 

1. Become familiar with SPI sub-system architecture, UVM, 

and System Verilog. 

2. Developing an AXI bus function model to enable closed- 

loop verification testing by serving as a connection between 

both the test bench and the SPI master device under test 

(DUT) and SPI slave model. 

3. Use UVM libraries, assertions, coverage, limited random 

stimuli, and System Verilog structures to create hierarchical 

testbench components. 

4. Verify data transmission by experimenting with different 

character widths and data types. 

 

One of the most often utilized serial protocols in a SoC is SPI 

since it operates at better bandwidth and throughput than other 

protocols like UART and I2C. Microcontrollers on the host 

side and slave devices are frequently made to interact more 

easily through the SPI Protocol. It is well-liked since it 

operates with less control signals. The specific SPI core that 

was the focus of this study serves as a slave AXI compliant 

device on the host side. Serial Shift Interface (SSI), Clock 

Generator (CG), and AXI Connection (AXI) are the three 

fundamental components of the SPI Master Core Controller. 

The AXI interface that allows for changes to be made to the 

five 32-bit registers of the SPI core controller. 

 

The serial Peripheral interface consists of serial clock signal 

and slave select signal. Implementing a high-speed SPI 

Master/Slave between 900 and 1000 MHz is possible. When 

two slaves are present, for instance, the core can be built with 

more flexible SPI-bus control handling. the core's control 

register, which determines whether the SPI module runs in 

master or slave mode, which is a key component, can be altered. 

The SPI status register provides information about running data 

transfer operations, including their state and whether they have 

finished or not. One more crucial factor is the adaptability of 

SPI Interface IPs built with a parameterization technique for 

different devices. Time Sharing Multiplex (TSM), an advanced 

design method, in multi-master systems, is utilized to 

automatically detect the master/slave devices. TSM is used to 

fix communication issues between many devices. Verification 

has been harder as a result of the current SoC's increased 

complexity. The truth is that difficult SoC verification 

consumes 70% of the time needed for product development. 

 

Reduced verification work is the answer to the issue of time to 

market. This increasing complexity is managed using 

contemporary verification techniques. For IP verification, 

extensive functional coverage employing constraint random 

simulation technique is required.Several tools are used for this, 

including scoreboards and coverage monitors. It is crucial to 

verify that a communication protocol, such as the SPI 

communication protocol, complies with the design 

specifications. By adopting a restricted random technique for 

better functional coverage, effective verification can be 

accomplished. More recent verification methods and languages 

have long been advocated by EDA businesses. For a system 

level verification technique or language to be effective, it must 

be scalable and reusable of the produced verification 

components. The combination of System Verilog and object- 

oriented programming is one of the most promising methods 

for top - level functional verification for modern complex SOC 

systems. System Verilog provides a complete verification 

environment that includes metrics based on coverage, direct 

and limited random generation, and assertion-based 

verification. Base class libraries created in System Verilog are 

used by the Universal Verification Methodology (UVM), the 

most recent functional verification approach.The AVM from 

Mentor, the OVM from Mentor & Cadence, the eRM from 

Verisity, and the VMM-RAL from Synopsys are some of the 

older technique libraries on which UVM is built.Thanks to this 

standardization, users can now create highly compatible, 

portable verification modules. The term "verification 

components" refers to these modules. For whole systems, 

modules, or protocols, they are encased and transformed into 

useable, flexible verification environments. These apps are 

built upon the extensive base class library. It offers hardware 

acceleration, emulation, assertion-based verification, coverage- 

driven restricted random verification, and restricted random 

verification. It emphasizes simulation. 

 

III. DESIGN OF SPI 

 

Combining a single Master with a single Slave is the simplest 

configuration for the Serial Peripheral Interface (SPI) [2]. 

However, interaction between a single Master unit or module 

and several Slave devices is possible i.e., with more than one 

Slave device. Any microcontroller device and accompanying 

peripherals can exchange information utilizes the SPI 

technology's high-speed, full-duplex, and synchronous 

communication bus protocol. But when it comes to verification, 

System Verilog, which is regarded as a hardware description 

language(HDL), is used to implement the oops programming 

language and provide a test environment for the SPI protocol. 

Advanced SystemVerilog features aid in creating a prospective 

verification environment, yet UVM implementation still 

enables a standardised verification technique (Universal 

VerificationMethodology). 
 

Fig2. Single master- single slave configuration 
 

As a multi-point interface, the SPI protocol connects the 

devices in a Master-Slave relationship. At this kind of interface, 

a single device typically a microcontroller plays the role of the 

Master, while other linked devices. 

 

Single Slave Configuration: 

A serial peripheral interface device has multiple slave devices 

and only one master device. There are 4 signalling pins in the 

SPI bus protocol . These are them: 

 Master-Output Slave-Input (MOSI)
 Master-Input Slave-Output(MISO)

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol23 Issue 8,2023

ISSN No: 2250-3676 www.ijesat.com Page 214



 

 

 Serial Clock or master Clock (SCLK, SCK, or MK)
 Slave Select pin (SS)/chip select pin(CS)

 

Here, each signal pin's operational functionality is listed: 

 Serial clock or master clock, often known as SCK or MK: 

One or more slaves can receive clock signals from this pin, but 

only the master can modify those signals. But this pin continues 

to be inactive. When there is no operation, the device is inactive 

(tri-state).
 Slave Select (SS): This pin is used by the Master module to 

select the Slave it wants to connect with or send data to.
 Master-Output Slave-Input (MOSI): The Master output pin 

and the Slave input pin are shared by this. This pin is utilized 

for data transfer as from Master module to the Slave module. A 

single direction is present in the pin.
 Master-Input Slave-Output (MISO): Both the Master input 

and Slave output pins are referred to as this pin. From the Slave 

unit to the Master unit, data is transmitted using this port. 

Additionally, it has a single direction.
Multi-Slave Configuration: 

A single SPI Master can implement numerous Slaves. The 

Slaves may be connected as separate components or in a daisy- 

chain arrangement. Every Slave module that is under the 

direction of the Master module has its own individual Chip 

Select (CS) pin in an individual configuration. When the 

Master activates the Slave Select (SS) port, the selected Slave 

has access to the information on the MOSI and MISO lines as 

well as the clock produced by the Master module. However, 

since the Master cannot tell which Slave is sending or receiving 

the information, data corruption on the MISO line results when 

multiple Slave Select (SS) signal ports are active. Figure 

3 shows that when the number of Slaves rises, the Master's 

Chip Select (CS) pin count also gradually rises. 

 

Features of SPI: 

 Has full duplex communication capabilities.
 I2C has higher and greater throughput than TWI (integrated 

Interface circuit).
 For bit transferring, there is no restriction on a particular bit 

size.
 With more superior and straightforward hardware 

interfaces than UART and I2C.
 The power need is very little.
 Slaves don't require precise oscillators because they use the 

master's clock.
 Less circuitry than I2C results in lower power consumption. 

Different strategies can be used, such as employing a 

multiplexer module to regulate a Slave Select (SS) signal, to 

progressively increase the number of Slaves in each 

configuration.

 

 

 
Fig3. Single Master Multi Slave Configuration 

 

IV. UVM METHODOLOGY 

 

Verification involves a test plan, which functions as a roadmap 

and gives instructions on how to complete the necessary task 

for verifying the design. The verification plan offers a road map 

that details the introduction, working hypotheses, test cases to 

execute, various aspects that can be tested, and the strategy to 

be used. All of these requirements allow the validation engineer 

to observe and understand how the testing procedure should be 

carried out. The verification test plan may be delivered in a 

variety of formats, including a document, plain text file, or 

spreadsheet. A Testbench's design and every module's 

functionality must be described in order to be verified. 

 

In addition to using Assertion-Based Testing (ABT), Coverage 

Driven Validation (CDV), and Constraint Randomized 

Generation (CRG), System Verilog, an efficient and promising 

hardware description language (HDL), also offers a good 

verification environment. These System Verilog-provided 

features steadily improve the verification process. System 

Verilog's feature is its improved hardware modelling, which 

streamlines the test procedure for the given DUT and gradually 

and efficiently increases RTL design productivity. 

Programming Direct Interface is the name of a System Verilog 

module that is a programming interface that can be used to 

interact with other language families. System Verilog may 

handle a variety of foreign languages, including C, C++, 

System C, and others. 

 

The Universal Verification Methodology (UVM), a 

replacement for System Verilog, is created to meet the 

requirement for automated DUT testing. UVM is a powerful 

set of System Verilog APIs that also includes a set of tried-and- 

true verification standards that can assist verification engineers 

in creating a productive and effective atmosphere for testing. 

Accellera keeps up an approachable open platform. Engineers 

began developing validation components that were mostly 

generic and could be applied to other projects as a result of the 

implementation of UVM approach, which boosted interaction 

and method and technology sharing across different 

verification users. The growth of validation components 

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol23 Issue 8,2023

ISSN No: 2250-3676 www.ijesat.com Page 215



 

 

without altering the source code was also highly encouraged 

and advocated. 

 

UVM COMPONENTS 

 

Sequence-item: The group consists of the elements or stimuli 

necessary to provide the intended stimulus. The sequence- 

items must be randomized in some way in order for the 

stimulus to be generated. The data variables produced by 

sequence-items must therefore be explicitly defined using the 

rand prefix and may also include limitations. The UVM 

sequence item is extended to create the sequence-item in UVM. 

Sequence: A sequence grows or produces a collection of 

sequence items and sends them through a sequencer to the 

driver. Extending UVM sequence is how the sequence process 

is carried out. 

 

Sequencer: The UVM sequencer is changed into a class called 

a sequencer, which manages the response exchange between 

the sequence and the driver. Driver and Sequencer both use 

TLM Interface to establish transaction communication. 

 

Driver: By extending the UVM driver, a driver is created. In 

order for the sequencer and driver to communicate, the TLM 

port (seq_item_port) needs to be addressed. Driver sends data 

to DUT via interface connection. 

 

Monitor: A passive type component, by modifying the UVM 

monitor class, the monitor class is produced. At the virtual 

interface level, it samples DUT signals and transforms signal- 

level actions into transaction-level operations. Monitor class, 

drives DUT signals, but does not. 

 

Agent: The UVM agent class is extended to create the Agent. 

Driver, monitor, collector, and sequencer are some examples of 

the verification components that the agent incorporates or 

groups. It is used to establish TLM connections between the 

aforementioned components. The agent has an operational 

mode that can be either active or passive, and occasionally both. 

Scoreboard: This class accepts data from the monitor and 

compares the numbers to what is expected. The reference 

model generates the expected values; however, the driver class 

can also be used to retrieve a copy. 

 

Environment: The uvm_env class is extended to create the 

environment class. Other classes like agents, scoreboards, and 

top-level monitors are grouped under this class. 

 

Test: By expanding the uvm_test, the Test is created. It belongs 

to the very top class. The Test class, which is the top-level class, 

is in responsibility of creating the Testbench, configuring it, 

and starting the many components that go into it. 

 

Interface: Interface serves as a link between the verification 

environment and the design-under-test, as depicted in Figure 

4. All pin-level connections to the DUT are contained within 

the interface. A collection of nets or variables make up an 

interface. 

 

 
Fig4. UVM ARCHITECTURE 

 

V. VERIFICATION OF SPI 

 

A sequence item is the first component of the UVM 

environment's architecture. Typically, uvm transaction or uvm 

sequence item classes are expanded to create sequence item 

class objects. It is composed of all required information 

exchange which can be either randomised or constrained to a 

specific boundary by using UVM structures. Sequences are 

created by extending uvm sequences to produce additional 

sequence components. To drive DUT pins, the driver receives 

the created sequences. There are duties in the SPI master core 

driver. The following sequence item must be obtained as the 

driver's initial action. Second, we control data transmission. 

Third, the sequence item is finished once the packet is written 

to the UVM analysis port. A fork...join call is used to run the 

jobs concurrently. The design of the testbench entails the 

creation of a monitor that keeps track of how the DUT interacts 

with the testbench. When the protocols are broken, an error is 

reported after watching the pin level transaction at the DUT's 

outputs. These UVM components are all connected by the 

agent. On the scoreboard, the DUT's actual reaction is 

contrasted with the expected response after predicting the 

expected output of the DUT in the monitor. The env class 

handles the creation and connection of the agent and 

scoreboard. 
 

Fig5. VIP Development of SPI Architecture 
 

As listed here, each UVM class includes a variety of simulation 

stages. 

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol23 Issue 8,2023

ISSN No: 2250-3676 www.ijesat.com Page 216



 

 

BUILD PHASE: The UVM testbench simulation starts with the 

construction phase, which creates instances of each UVM 

component. 

 

CONNECT PHASE: Connections are made between the 

subcomponents during this phase. Using TLM ports, testbench 

connections are established. 

 

ELABORATION PHASE: The elaboration phase involves 

checking connections and setting up address ranges, values, 

and pointers. 

 

SIMULATION PHASE: Phase one of simulation involves 

setting up initial runtime configurations and validating UVM 

testbench topology. 

 

RUN PHASE: Run phase is a task-based simulation because of 

this it takes more time than other phases. Time 0 begins this 

phase. 

 

EXTRACT PHASE: In this stage, to build final statistics, 

information is gathered from the DUT and the scoreboard. 

 

CHECK PHASE: It is used to verify that the DUT functioned 

as expected and to spot any mistakes that may have happened 

while the test bench was being run. 

 

REPORT PHASE: In the Report phase, simulation results are 

provided for the verification engineer to review. 

 

FINAL PHASE: It is used to perform any additional unfinished 

tasks that have not yet been handled by the test bench. 

 

Fig6. UVM PHASES 

 

VI. RESULTS 

 

Transcript results 

 

 
 

Fig7. Transcript Results 

 

Waveform results: 

The AXI bus function model is used by the SPI master and AXI 

bus function model to communicate. In terms of the AXI 

protocol, the read, write, and reset features of the architecture 

are its key functions. The sclk signal, which is used to 

synchronize communications between the master and slave. 

The control registers of the master and slave are both set up 

ahead of the transfer. The send and receive signals' sampling 

edges are specified by flags in the control register like tx 

negedge/rx posedge. These two flags ought to have distinct 

values to one another because SPI write output and read input 

both happen at the identical single buffer when using a shift 

register approach. once each and every SPI register has been 

set, the go flag of the control loop must be asserted in order for 

the transfer to begin.The testbench makes use of the current 

flag transfer to synchronize the watch each element of the 

endless loop. Finally, the transaction in progress signal is 

emitted, as seen in Figure, after 32 clock cycles, indicating that 

the AXI interface can now collect the data. 

 

Fig8. SPI Master to Slave Communication 

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol23 Issue 8,2023

ISSN No: 2250-3676 www.ijesat.com Page 217



 

 

 

 
 

VII. CONCLUSION AND FUTURESCOPE 

 

The results presented here are restricted to a single master and 

slave, but if utilized for several slaves, the components can be 

simply reused, as indicated by the structural model of the 

environment. System Verilog was employed in the project to 

build the verification environment for the SPI Interface. The 

objective was to obtain qualities like durability and 

renewability. In order to allow for configuration based on need, 

we built parameterized components. Reusability can be 

accomplished utilizing the flow provided in the paper, 

according to outcomes analysis. 

 

REFERENCES 

 

[1]. An introduction to i2c and SPI protocols ,by Frédéric 

Leens, IEEE Instrumentation & Measurement Magazine 

February 2009. 

[2]. S. Sutherland, S. Davidmann, and P. Flake, System 

Verilog for Design: A Guide to Using System Verilog for 

Hardware Design and Modeling, 2nd ed. Springer 

Publishing Company, Incorporated, 2010. 

[3]. IEEE Standard for Universal Verification Methodology 

Language Reference Manual, 2017. 

[4]. Design and Verification of Serial Peripheral Interface, by 

M.Sandya, K.Rajasekhar, International Journal of 

Engineering Trends and Technology- Volume3Issue4- 

2012 

[5]. IP Design of Universal Multiple Devices SPI Interface , 

by Tianxiang Liu , Yunfeng Wang. 

[6]. S. Simon, SPI Master Core Specification, pp 1-13, 

www.opencores.org, 2004. 

[7]. W. Ni and J. Zhang, “Research of reusability based on 

UVM verification,” in 2015 IEEE 11th International 

Conference on ASIC (ASICON), Nov 2015, pp. 1–4. 

[8]. K. Fathy and K. Salah, “An Efficient Scenario Based 

Testing Methodology Using UVM,” in 2016 17th 

International Workshop on Microprocessor and SOC 

Test and Verification (MTV), Dec 2016, pp. 57–60. 

[9]. P. Rajashekar Reddy, P. Sreekanth, and K. Arun Kumar, 

“Serial Peripheral Interface-Master Universal 

Verification Component using UVM,” International 

Journal of Advanced Scientific Technologies in 

Engineering and Management Sciences, vol. 3, p. 27, 06 

2017. 

[10]. R. Prasad and C. S. Rani, “UART IP CORE 

VERIFICATION BY USING UVM,” IRF International 

Conference, 15 2016. 

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol23 Issue 8,2023

ISSN No: 2250-3676 www.ijesat.com Page 218

http://www.opencores.org/

	Abstract:- Since integrated circuit designs continuously expanding, which makes the verification process more difficult and time-consuming, effective verification of such circuit designs is essential. As a result, a strong testbench structure is requi...
	I. INTRODUCTION
	II. RESEARCH GOALS
	Transcript results
	Waveform results:

